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Abstract—Formulation of a mathematical model of a self-
balancing two-wheeled vehicle. Implementation of mechanical
model in Simscape Multibody with 3D visualization. Design of
linear quadratic Gaussian LQG controller, combination of linear
quadratic regulator LQR and linear quadratic observer (Kalman
filter), for stabilization and tracking of translation setpoints. Con-
troller performance analysis for initial angles different from 0 and
thrust forces on the vehicle.

I. INTRODUCTION

In the last decades there have been great advances in mobile
robotics, leading to competent robots that are used in different
industries. Land mobile robots are widely used, for example,
for cargo transportation, and in their development two goals
are pursued: the ability to move quickly and efficiently, and the
ability to circumvent obstacles present in their environment.

In general, terrestrial robots can be classified according to
their form of locomotion in two main groups: those based on
legs and those based on some type of rotating element such as
wheels or caterpillars. Leg-based robots are characterized by
their great maneuverability to avoid obstacles, but they move
relatively slowly due to the complexity involved in each of their
movements. In contrast, wheel-based robots can move quickly
but can only overcome obstacles if they are small and the wheel
does not lose contact with the ground.

In the search for a terrestrial robot that stands out for its
agility and versatility, projects such as the Ascento robot, whose
configuration combines two articulated legs with wheels at both
ends, have emerged. In this way, the wheels allow it to move
at high speed while the legs give it the freedom to negotiate
irregularities in the terrain or even jump off the ground.

One of the main characteristics of this configuration is the
fact that it has only two wheels and the center of mass of the
robot above its axis of rotation, which makes it an inherently
unstable structure. A controller is proposed to solve the stabi-
lization problem of a simplified version of such a robot where
leg motion is not considered, Figure 1.

The vehicle’s actuators are two DC motors, each with a
gearbox coupled to the corresponding wheel. The sensors
available to the system are incremental encoders that measure
the angular position of the shaft of each motor, and an IMU
(inertial measurement unit) consisting of an accelerometer and
a gyroscope mounted on the vehicle chassis in such a way as to
estimate its orientation.

For the aforementioned task, the design of an optimal con-
troller is proposed. Optimal control is a particular branch of
modern control, which allows to obtain systems that are not
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Fig. 1. Simplified schematic of the physical system

only stable and meet the requirements of classical control
(transient response with certain characteristics, disturbance re-
jection, no steady state error, robustness of the controller to
model uncertainty, etc.), but are also the best possible solution
of a particular type. Linear optimal control is a special type of
optimal control where the plant to be controlled is assumed to
be linear. Such linear controllers are obtained by working with
quadratic performance indices and are called linear quadratic
LQI1].

Given the mechanical power of the actuators and the char-
acteristics of the sensors that were selected as reference, it is
desired to know what performance can be obtained by imple-
menting an LQG controller for vehicle stabilization, in an initial
design stage with a model-in-the-loop strategy.

II. DESIGN PROCESS AND REQUIREMENTS TO BE MET BY
THE VEHICLE CONTROLLER

Figure 20 shows a diagram summarizing the design process
of a controller. In light blue the stages discussed in the work are
highlighted:

1) The definition of the requirements to be met by the

controller,

2) the formulation of the mathematical model of the plant,

3) the approach of a control by complete feedback of state,

4) the design of a complete state observer.

It is necessary then, to define the requirements that the
controller must fulfill to discern if its operation is correct or
not. For this purpose, the objective of the work is to obtain a
controller that allows the vehicle, at least, to follow a sinusoidal



position setpoint with an amplitude of half a meter and a period
of 15 seconds, remaining stable along the entire path. The
tolerance admitted in time is 1 second, and in translation an
error of £10cm is admitted.

At the end of the work, a systematic analysis of the design
process is obtained, and the necessary software is available so
that, once the mechanical requirements of the vehicle for a
specific application have been defined, the parameters of the
initial stages (including the requirements) can be changed and
the corresponding controller can be quickly obtained.

III. FORMULATION OF THE MATHEMATICAL MODEL OF
THE VEHICLE

A. Description of the simplified physical model

It is desired to obtain the mathematical model of the system
from physical relations, for which a series of considerations are
made. The first one is the assumption that the wheels of the
vehicle do not slide with the ground, therefore:

=T (1)

Where z; is the translation coordinate of the system with
respect to a fixed frame of reference in the environment, phi
is the angle of rotation of the wheels and 7, is the radius of the
wheels. Since the present work seeks to solve the vehicle stabi-
lization problem and does not analyze the navigation problem
in the environment, where it would be necessary to characterize
the position and orientation in the zy plane, both wheels are
considered to be driven in the same way and synchronously
rotate the same angle at the same angular velocity. The wheels
have a given mass m,, and moment of inertia [,, with respect
to their axis of rotation, and the output of the gearbox of the
motors applies a total torque T, equal to the sum of the torque
of each motor on its corresponding coupled wheel.

The vehicle body is physically modeled as an inverted pen-
dulum with point mass m,, located at the center of mass of the
chassis, and moment of inertia I, with respect to the wheel axis
(figure 1). The coordinates of this point are described by the
following equations:

Ty =Ty

{xcm =[sinf + ry¢ @)

Zem = lcos 6

Where [ is the length of the segment joining the axis of the
wheels and the center of mass, and theta is the angle formed by
this segment with a vertical plane, perpendicular to the ground,
which crosses the axis of the wheels.

Any perturbation on the vehicle chassis is modeled as a
torque T, applied on the pivot point of the pendulum, i.e., the
axis of the wheels.

Table I summarizes the parameters along with the corre-
sponding values used in the vehicle model.

B. Dynamic model, equations of motion

The equations of motion are obtained from an energetic
approach following the Lagrangian formulation. For this it is
necessary to obtain the kinetic and potential energy expressions
of the system under study.

Parameter | Value Description
Tw 32mm Wheel radius
My 0.064Kg Wheel mass
Wheel moment of inertia
-5 2
Tw 2.787 X 107°Kgm with respect to its axis of rotation
Contact damping
bw 0.01Nms/rad wheel-ground
mp 0.5Kg Chassis mass
Moment of inertia of chassis
2
Ty 0.0029Kgm relative to wheel axis
Length of the segment joining
l 0.06m the axis of the wheels and the center
of mass of the chassis

TABLET
PARAMETERS OF THE MODELED VEHICLE

The kinetic energy of the wheel, 1 or 2 since they are
considered identical, is:

1 . 1 .
Eyap2) = §mw$§ + §Iw¢2 3)

Being two wheels, and applying the relation of the equation
1, the following kinetic energy expression is obtained:

Iy, .
Ew = Poyp1 + Ew2 = (mw + 2) .’IJ? (4)
T’LU
The kinetic energy of the pendulum is given by:

1 1.
Ey = —myvi + = 1,6° 5)
2 2
Deriving the equation 2, we obtain the velocity of the center
of mass in its respective components x and z:

{wcm =10cos O + ry¢ =10 cos O + iy ©)

Zem = —10sin 0

The linear velocity of the center of mass of the pendulum vy,

is given by:
vy =\ @i + 2ém’ (7

The potential energy of the wheels is zero, since their center
is considered to remain at a constant height z equal to their
radius, so:

Vi =0 ®)

The potential energy of the pendulum is of the following
form:
Vi = mypgl cos 6 &)

Where g is the acceleration in z due to gravity.

In the simplified model of the trolley-pendulum system only
that produced by the friction b,, between the wheels and the
floor is considered as dissipated energy:

D= %bqu? X 2 = i;uxf (10)

Multiplied by two to be equal for both wheels.

The total kinetic energy being the sum of the kinetic energy
of the wheels and that of the pendulum F = F,, + E}, and
the total potential energy the potential energy of the wheels and
the pendulum V' = V,, + V},, the Lagrangian is defined as the
difference between the kinetic and potential energy L = E—V.



Then, the dynamic equations describing the motion of the
system are obtained through the Euler-Lagrange equations, of
oD

the form:
i oL B oL
dt \ 9¢; Jq; 04;

Where ¢; are the generalized coordinates of the system
(equation 12), which fully describe the position and orientation
of the vehicle: z; the translation coordinate and 6 its angle of
inclination with respect to the vertical.

= [2] - 3

And where Q; are the generalized forces (equation 13), in
this case the torques applied to each wheel T’,; and T,,> and
the perturbations on the vehicle chassis 7.

Q: Q1 _ F, _ T’w/rw
Q2 Mo T+ Ty
The dynamic equations of motion obtained for the trolley-
pendulum system are as follows:

=Qi— (1)

(12)

13)

2by,
"

iy = LT,

Meqdy + Myl cos 00 — mb192 sin 6 + -

(14
mpl cos 03, + Togf — mpglsing = —T,, + Ty

Where,

21,
meq:mb—i—Qmw—i——zw
rw

Iog = Iy + myl?

It can be identified that both equations are nonlinear, and can
be expressed in matrix form of the form:

NEE(g) - G+ hlg,§) = Hr -u (15)
Where,

+2my + 2L mylcosd
NLp _ | w =) 16
(Q) myl cos 6 I + myl? (16)

. —mplf? sin @ + 2
e =| " T (17)
—mpgl sin 0
L0 T,

Hy =" u= | 18
o ER I R

C. Nonlinear state-space model

We arrive at a state-space representation of the model, defin-
ing the state vector as:

q

It can be seen that the dimension of the state vector, and
hence the order of the model, is n = 4.

The state-space representation of the nonlinear model will be
of the form:

[z 0 @ 6] (19)

&= f(z,u,t) (20)

From the equation 14, the following matrix equation can be

obtained:
= g1 0
T = = Go + 0 -u
—NEE(g) " - h(g, 4) NLE(g)~! - Hr
. 1T
Ty = |z 0o Fw o) (21)

Where z, are the initial conditions of the system.

The design of the nonlinear model in MATLAB Simulink
can be seen in figure 21. In order to verify the mathematical
model obtained, the response of the nonlinear model to a null
input and an initial tilt angle 6, assigned a value close to zero
(6o = 0.1rad) was analyzed. In figure 2 is such response,
where in blue can be observed the variable x;, which has a
small oscillation and remains at O, and in red the variable 6
which when given an initial value, however small, is taken out
of its unstable equilibrium condition at # = 0 and oscillates
by damping and settling in its stable equilibrium condition at
6 = 7. Physically the robot cannot reach the # = 7 condition
as it would first impact the ground, however, it is useful to
illustrate that the mathematical model is correct.
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Fig. 2. Open-loop nonlinear model response to zero input and initial angle
6o = 0.1rad

D. Simplified linear time invariant model LTI

The linearization of the system is performed around an
operating point that is chosen in an equilibrium configuration.
Mathematically the system has two equilibrium points at theta,
one stable for theta = 0 and one unstable for theta = O,
both with theta = 0. Physically, and the one of interest in the
application, is the unstable equilibrium point where § = 0, i.e.,
where the pendulum swings inverted. The translation coordi-
nate x; is free since it does not contribute nonlinearities to the
model (the system can stabilize at any coordinate x;).

The Jacobian of the nonlinear model must be obtained in
order to proceed to linearize at the operating point z; = 0.
However, since the procedure is very extensive, for practical



purposes the following approximations are made for small
angles leading to the same result:

cos O ~ 1 sin ©g ~ O Oy~ 0 (22)

And linearizing the equations ??, we obtain the following
linear equations:

Megle + mylf + Qrbéw Ty = %Tw (23)
mplits + Logh — mpgld = —Ty + Ty
The equation 23 can be expressed in matrix form as:
E-§+F-¢g+G-q=Hr -u (24)
Where,
m myl e 0 0
E — €q — Tw G =
mpl  Ieq 0 0 0 —mupgl
(25)

H7 and u are defined in the equation 18.
The equation 24 can be rewritten in the form:

j=-E'G.¢-E'F-¢g+E'Hr -7 (26)

Then, with the same state vector defined in the equation 19,
one can obtain a state-space representation of the LTI model of
the form:

t=A-2+B-u 27
Where,
_ @2><2 H2><2 _ @2><2
A=l gig —E—l]F} b= {E_IHT] 28)

Where Q4 is a 2 X 2 matrix of zeros and I2 2 is an identity
matrix of 2 x 2.

E. Open-loop stability analysis of LTI model and non-minimum
phase system

The poles of the LTI model can be obtained by calculating the
eigenvalues of the A matrix of the equation 27. The system has
4 poles, one at the origin, two negative real ones at —40.3815
and —7.5366, and one positive real one at 8.1626. Having
a positive real pole makes the open-loop system an unstable
system[10][8], which is correct for having performed the lin-
earization of the model at an operating point corresponding to
an unstable equilibrium configuration.

The transfer function obtained for the LTI system from the
input T, to the output x; is as follows:

76.58 - 52 — 3975
s-($3+39.76 - s2 — 86.8 - s — 2484)

The figure 3 shows the map of poles and zeros for the transfer
function H(s).

It should be noted that, in addition to the positive real pole
that provides information about the instability of the system,
there is a positive real zero that indicates that the system is
not of minimum phase (or non-minimum phase). This type
of systems have different characteristics, among them is that
the response to a step presents an initial direction opposite
to the one intended by the input{nonminimumphase]. In this
case, since the closed-loop system still has a positive real-part

H(s) = (29)
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Fig. 3. Map of poles and zeros of the transfer function from T, to x¢
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Fig. 4. Initial second enlargement of nonlinear model response with LQG

controller

zero, given a positive x; position setpoint step, the vehicle will
initially tend to move in the negative direction of z, (figure 4).

One of the conclusions drawn from this type of behavior
is that the response is not instantaneous and makes control
more difficult because it is more susceptible to an increase in
controller gain.

IV. SENSOR AND ACTUATOR MODELING
A. Incremental encoder model

The vehicle has an incremental encoder in each of the ac-
tuators that allows the angular position of the motor shaft to
be known. The encoder generates two square waves 90° out of
phase that send 12 pulses for each motor revolution. As shown
in the figure 5, different accuracies can be obtained according
to how the pulses of these waves are counted: 12 pulses per
revolution if only the rising edge of wave A is considered, 12 x 2
if the rising edge of both waves is considered and 12 x 4 if in
addition to the rising edge the falling edge is considered.

The encoder action is modeled as a quantization of the signal
®m, which if measured in radians will be given by a A equal to:

A 2
12 x 4

The difference with a conventional quantization that must
be bridged for encoder modeling is that it is not a rounding

(30)
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Fig. 5. Quadrature encoder-generated square waves in quadrature

operation, but a ceiling or floor function depending on the
direction of rotation of the axis. With [] being the notation
for the ceiling function and | | being the notation for the floor
function, the following quantization function () is proposed:

A e if Gy < 0
Q(dm) = < dm if b =0 31)
A% ifgy, >0

The model in MATLAB Simulink is implemented with a
function that executes the equation 31. In the figure 6 is the
proposed model and in the figure 7 an example of the behavior
that presents the proposed quantization for an encoder reading
of 12 pulses per revolution in order to have a higher A that is
easy to observe.

Q(phi_m)

Fig. 6. MATLAB Simulink model of signal quantization ¢y,

Q)

L
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Fig. 7. Example of proposed quantization to emulate quadrature encoder
behavior

The advantage of modeling the encoder as a quantization
process is that it gives the possibility to apply the theory about
the error that the process adds to the signal. Assuming that
the probability of the quantization error has uniform distribu-
tion[12][17], it can be obtained that the variance of the error
is:

A2

5G] (32)

o2 =

It should be noted that, since to emulate the behavior of the
encoder the value is not rounded but a ceiling or floor function
is applied depending on the direction of rotation of the axis,
the average of this probability is not at 0 as in a conventional
quantification, but at:

.3
HQ = A
-2

B. MEMS gyroscope model

if g < 0

if ¢y, > 0 53)

As previously mentioned, the inertial measurement unit
available in the vehicle contains a gyroscope that allows the
measurement of the tilt angular velocity H(t) Based on the data
from the MPU6050 IMU, the model was obtained in MATLAB
Simulink Simulink in Figure 22.

It can be seen that the input to the model is the actual sensed
angular velocity of the system at the position where the gyro
is located. In the mechanical design it was placed such that the
y axis of the IMU is parallel to the axis of the wheels, and is
in the same vertical plane from which 6 is measured, so the
measurement of 6 is direct. The output of the model is a 16-bit
signed integer. The x and z axes of the gyro are not used in this
work.

The conversion ratio between the physical measurement in
sfrac®s to its representation in a 16-bit signed integer is called
the sensitivity factor. For the unit under analysis the full scale
range of measurement, which determines the sensitivity, can
be set to 4 values: +250, £500, £1000 or +2000°/s. The
highest possible sensitivity is desired without saturating the
measurement, so the angular velocity of the system is simulated
and studied with the full state feedback controller obtained
in section V-B under the same perturbation with which the
controller was analyzed.

In figure 8 it can be observed that the maximum angular
velocity acquired by the vehicle is close to 200°/s, so it is con-
sidered that by configuring the gyroscope in a range of +250°/s
the measurement will not be saturated. For such a range the
sensitivity factor is 131L58/(/s) (LSB per least significant bit).
The nonlinearity of the gyro according to the specifications is
0.2% of full scale, in this case that error will only be 0.5°/s.

The device is a MEMS (micro-electromechanical system)
gyroscope, whose operating principle is that of an oscillating
mass reacting by corioliscite[ 18] effect and therefore its dynam-
ics can be modeled as a mass-spring system. The manufacturer
provides the mechanical frequency of such a system, for the y-
axis equal to wy = 27kH z (at least which is the worst case).
No damping information is available, so the system is modeled
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Fig. 8. Response G(t) of nonlinear system with LQR controller to 10V thrust
at center of mass for 0.5s

as a second-order Butterworth filter, where the damping is
¢ = v2/2 and the transfer function is of the form,
wiy

H =
() $2 + 20wy s + Wi

The dynamics of the sensor has a much higher frequency than
that of the vehicle, therefore it does not affect the measurement
and could be neglected.

The device is also subject to a static bias or offset, which can
be generated for example by residual voltages on the printed
circuit board assembly. This offset can be corrected when
starting the vehicle software in the calibration process, it is
placed in the model but for simplicity it is given a value of 0.

Like any sensor, the gyro adds noise to the signal. The noise
is modeled as white Gaussian noise, i.e., it has mean pigyr0 = 0,
same intensity at different frequencies, and therefore constant
power spectral density. The sensor specifications provide the
information of such noise in amplitude spectral density, equal
to 0.0057¢/vH= at 10H z. It can be obtained in terms of power
spectral density by squaring it[15]. Using MATLAB, the signal
with noise was simulated and the sensor variance was obtained.

(35)

(34)

Ogyro & T.64x107°

Finally, it is important to note that a 16-bit signed integer
conversion block was used in the model. In this conversion, a
saturation is also performed according to the representation and
the chosen scale.

C. Model of accelerometer as a 0 sensor

The IMU MPUG6050 has a built-in accelerometer in addition
to the gyroscope. This allows measuring linear accelerations
in its three axes considering the acceleration of gravity. Since
gravity is an acceleration that always acts perpendicular to
the ground, it can be decomposed in the three axes of the
accelerometer and thus, by means of trigonometric identities,
the orientation of the sensor can be known. If used in this way,
it should be noted that any acceleration caused in the sensor that

is not due to gravity will be considered noise as it will skew the
measurement.

To estimate the tilt angle 6 of the vehicle only two axes of
the sensor are used, z aligned with the inverted pendulum and
x perpendicular to it and the axis of the wheels, these axes
form the plane of the schematic 1. The model obtained for the
accelerometer is equivalent to the gyroscope model without the
dynamics of the mass-spring system, and can be seen in figure
23.

The input to the model is the actual acceleration measure-
ment on the corresponding axis, and the output in its 16-bit
signed integer representation.

The scale range of the accelerometer can be set to +2, +4,
+8 or £16g. Since it is only desired to read the acceleration
of gravity, it is set to £2g even though experiencing other
accelerations may cause the measurement to saturate. For the
chosen range the sensitivity factor is 16.384L55/g.

There is a static offset, but as for the gyroscope in the model it
is considered null. The noise incorporated to the reading by the
accelerometer has an amplitude spectral density of 40019/vi=
and its sampling frequency is 1kHz with the possibility of
configuring it to obtain readings at a lower frequency.

Using MATLAB, the signal was simulated with noise and the
variance of the sensor was obtained.

02~ 1.6x107" (36)

2 Hg
o = ( 400
accel ( /7HZ

However, it is desired to obtain the variance of the 6 signal
which is the variable to be measured. Therefore, a simulation
was implemented where the composition of 6 with both ac-
celerations is performed through the function atan2 and the
following variance was obtained:

2
) -10Hz = 1.6 x 10~ %4> (37)

o2 ~ 0.065 (38)

D. Direct current motors with gearbox

In the present work we seek to obtain a controller with
an independent analysis of the electric motors that will drive
the vehicle. However, in order to have a reference and that
the control actions are not excessive, the torque modulator is
modeled as a first order system with transfer function:

_T'"L_ 1
CTr Ts+1

Hr(s) (39)

Where 7 is the time constant of the modulator and is taken to
be bms.

The motors are considered to have a gearbox with a gear
ratio of 1 34. To limit the torque, a saturation block is
placed in the model that allows the drives a maximum torque
of 8.5 x 10~3Kgm. In addition, it is permanently controlled in
the obtained responses that the angular velocity at the output of
the gearbox does not exceed 110rpm.



V. COMPLETE STATE FEEDBACK CONTROLLER DESIGN
A. System controllability analysis

The controllability study of the system allows to establish the
possibility of locating the eigenvalues or poles of the feedback
LTI model[10][2] using a control law such as the one in the
equation 40.

u=-K z (40)

That the system is controllable also implies that by manip-
ulating the input appropriately, the system can be driven to a
desired state (reachability [3]).

Constructing the controllability matrix % for the system
under study with n = 4 as:

¢ =[B AB, A’B; A’B] (41)

Where B, is the input matrix of the system for the manip-
ulated variable u = T,,, its rank can be analyzed, and being
equal to 4 it can be confirmed that the system is controllable.

If the system is controllable, as a consequence of everything
previously mentioned, the system is also stabilizable, i.e., the
eigenvector associated to the positive real pole calculated in
section III-E lies within the vector subspace of the controlla-
bility matrix.

By establishing the controllability of the system we also
verify that the conceptual mechanical design of the robot, more
specifically the B; matrix of the model, is adequate.

B. LOR linear quadratic controller design

The closed-loop system expression is obtained by replacing
the control law of equation 40 in the LTI model of equation 27:

i=A-z+B-(-K-2) = i=(A-BK) -z 42

Where K is a matrix with as many columns as n order of
the model and contains the constants of the controller. These
constants are selected such that the eigenvalues of the closed-
loop dynamics matrix (A — BymathbbK) are in the desired
location. Figure 9 shows the full state feedback controller
model interacting with the LTI model of the system.

X*
S
2 ) p| U

Td Modelo LTI

X=Ax+ Bu
y=Cx+Du | y=x

Fig. 9. Complete state feedback controller model in MATLAB Simulink

At a minimum you want the poles to be negative real to
have a controller that stabilizes the system. For example, by
assigning the poles of the system such that the positive real
pole calculated in section III-E is now at —80 and the rest at

their original location, the following controller K is obtained:
K= [O —2.4352 —1.5771 —0.2983] (43)

And simulating the controller in conjunction with the LTI
model of the system, as shown in figure 9, with a perturbation

corresponding to 10V at the center of mass of the vehicle, so as
to push it for half a second, and state setpoint at 0, the response
of the figure 10a is obtained. It can be seen that by assigning the
poles manually the setpoint is achieved, except for x;(t) since
the system does not return to the initial position.

It is desired that this location of the eigenvalues is performed
following an optimal criterion for the model. One of the main
reasons is that an excessively fast response leads to excessive
stress on the vehicle’s actuators.

To find the optimal location of the eigenvalues of the feed-
back system, a linear quadratic regulator (LQR) is used. The
LQR controller is based on minimizing a cost function J that
penalizes to a greater or lesser extent the deviation of the system
state from the target and the effort admitted in the control input
or action[11][6].

J= / h (2" Quz + u" Quu) dt (44)
0

In the equation 44 we can observe the cost function to be
optimized in the LQR control, where Q, is the state cost
matrix, positive definite matrix, and Q,, is the control action
cost matrix, positive semi-definite matrix. The solution of the
LQR problem is given by:

K =Q;'B{S (45)

Where S is a positive definite symmetric matrix obtained by
solving the algebraic Riccati[11] equation:

ATS +SA — SB1Q;'B{S+Q, =0 (46)

The equation 46 is solved by means of software tools, in this
case MATLAB.

Then, the LQR controller tuning is done by choosing the
weights of the cost matrices QQ, and Q,. It is usually by
trial and error, however there are different methods to obtain
initial values to iterate with. In this work we used a diagonal
weighting following Bryson’s rule. Diagonal weighting consists
of posing diagonal cost matrices, and choosing the elements of
the diagonal based on how much each state variable and each
corresponding input contributes to the total cost. Being a system
of 4 state variables (n = 4) and a single manipulated input
(p = 1), such matrices will be of the form of the equation 47.

@ 0 0 0
|0 g 0 O _
Q=g %0 0l Q=] @
00 0 q

Bryson’s rule allows setting maximum values for the error
of the state variables and maximum values for the stress of the
inputs. The weighting is chosen such that ¢; = o2/ mf)maw and
pi = B7 /UZ > Where i yna, represents the maximum error
allowed for state variable ¢ and ; ;a2 the maximum effort for

input i. a; and j3; are selected such that:

p
> B=1
i=1

The «; are assigned a value such that they are all equal,
that is o; = +/0.25 such that when added to the square they
result in 1. For the translation variable x; a maximum error of

n

(48)



0.01m and the maximum translation speed error of 0.0151m/s
was assigned. The maximum allowable tilt angle posed was
20° and the maximum tilt angular velocity error of 1rpm, both
relatively large to allow for a translation variable correction. If
such constraints are too aggressive the tilt angle will always be
very close to 0 and vehicle motion is prevented.

For the control action cost matrix Q, the parameter 3; is
equal to 1. With u being the sum of the torque of the two
actuators, Ui, maq 1S chosen as 2 times 90% of the maximum
load torque of the motors which is 8.5 x 1073 K g - m according
to the technical specifications. Therefore, 11 4, = 0.0153 and
p1 = 4.2719 x 103. The resulting cost matrices are as follows:

2.5 0 0 0

B 0 0.0021 0 0

Q = 0 0 1.0994 0
0 0 0 0.0228

@u =

It is important to note that these cost matrices were obtained
by regulating the maximum error value of the admitted state
variables and the maximum stress value of the input, which is
much more intuitive as a designer than locating the poles in the
complex plane.

The resulting controller constant matrix is as follows:

[4.2719 x 10%]

K = [-0.7650 —0.6428 —0.3304 —0.1098]  (49)

The poles with the new constants are located at —75.8387,
—0.9645, —3.9077 and —10.6379. Figure 10b shows the re-
sponse of the LTI model of the vehicle with the LQR controller
to a null state setpoint and a perturbation corresponding to a
thrust force of 10V on the center of mass of the vehicle per half
second. It can be seen that compared to figure 10a, a response a
few seconds slower but compliant with the return of the vehicle
to the origin is obtained.

C. LOR controller performance evaluation

Once the desired controller is obtained, it is evaluated under
the requirements stated in section II. If the requirements are not
met, the controller tuning process is iterated again.

With the LQR controller of equation 49 the LTI model
meets the setpoint within the imposed tolerances, as does the
mechanical model as can be seen in figure 11, where zj is the
setpoint to follow and Vehicle: (1) is the translation variable x;
of the mechanical model in Simscape Multibody.

VI. OPTIMAL OBSERVER DESIGN
A. System observability analysis

In section V-B it was assumed that all system state variables
are accessible (see figure 9) which is incorrect since in the
actual implementation only a limited amount of such variables
are measured with the sensors available in the vehicle. How-
ever, the design of the optimal controller by full LQR state
feedback is valid, because an estimation of the inaccessible
state variables can be made from the measured variables and
the control action[13] by means of a so-called closed-loop
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(a) Response with controller with pole mapping
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08 | | | | | | | | |
Tiempo [s]
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Fig. 10. Response of LTI model with full state feedback controller to 10N
thrust on vehicle center of mass

estimator or observer. The measured variables are represented
by the following equation:
y=C-z (50)

Where y is a vector of ¢ components (less than n) and C is
the matrix of measured variables.

Similar to the study of controllability in section V-A, the
observability of the system is studied. The observability allows
to establish the possibility of making a complete estimation
of the x state of the system from the measurement of the y
variables. a

Constructing the observability matrix & for the system under
study with n = 4:

C
CA
CA?
CA3

(G
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Fig. 11. Setpoint tracking check of mechanical model with LQR controller

Its rank can be analyzed, and being equal to the order of the
model, it can be confirmed that the system is observable for the
C matrix considered.

For the system under study, the observability matrix & has
rank equal to 4 if and only if the state variable x4, i.e., the trans-
lation of the vehicle, is measured. Of course, the system is still
observable if to this measurement is added the measurement of
the tilt angle or the corresponding velocities.

As described in section IV, in the vehicle z; is indirectly
measured through the incremental encoders in the motors
measuring ¢,,, the tilt angular velocity 0 is measured with
a gyroscope and also the tilt angle # with an accelerometer
by calculating the corresponding trigonometric ratios. So the
matrix C is of the form:

12 ><T4 X34 0 0 0
C= 0 1 0 0 (52)
0 0 01

That the system is observable not only ensures the ability to
“reconstruct” the state of the system from the measured state
variables, but also assures us the possibility of assigning the
observer’s eigenvalues so that such estimation is fast to a greater
or lesser extent[7], analogous to the assignment of poles of the
closed-loop system with the concept of controllability.

B. Kalman filter design

The observer itself is a linear dynamic system whose inputs
are the measured state variables y of the system to be observed,
and the control action u with which that system is manipu-
lated[13][4]. The equation describing the observer’s behavior

is as follows:
i=A-2+B-utL (y—3) (53)

Where Z is the state estimate, 4 is the estimate of measured
variables according to the equation §j = C - &, and where L is

the matrix of constants that allows the observer’s eigenvalues
to be located such that the estimation error converges to zero
in the required time and manner (equivalent to the K matrix
of constants of state feedback control). Working algebraically
with the equation 53, one can obtain an equation of the form:
i=(A-LC)-2+[B; LJ- m (54)

It can be shown that if the system is observable, making the
observer’s dynamics stable, or what is the same, choosing the
constants of the matrix L such that the eigenvalues of (A —ILC)
are negative real, then the estimate 2 tends to be equal to  and,
hence, the error tends to zero[4].

The observer implementation in MATLAB Simulink is found
in Figure 12. The inputs u and y are concatenated into an input
vector to a state-space model with the dynamics of the observer.
Insuchamodel A = A - LC, B = [Bl IL] , C is an identity
matrix of 4 x 4 since the full state estimate is desired as output,
and D is a null matrix with number of columns equal to B and
number of rows equal to C. The output of the state-space model
corresponds to the full state estimate x.

u
I X = Ax+ Bu
y= Cx + Di
| ] et

y Observador

Fig. 12. Observer implementation in MATLAB Simulink

A first observer was implemented by manually assigning the
eigenvalues, placing them at —1, —2, —4 and —8. The resulting
observer constant matrix L is as follows:

0 0 0.1446
0 8 1
L=1 0 _ss8157 54771 (55)
0.0003 86.8005 —34.8025

Then the observer with measured outputs was connected
with the corresponding noise to the LQR controller obtained
in section V-B as seen in figure 25. In this way, the tracking of
the state variables against a sinusoidal setpoint of 1m amplitude
and 15s period can be analyzed.

In figure 13 it can be seen that the estimation of § is not
correct, and therefore the system could not be controlled with
the L matrix obtained.

It is desired that, as in pole placement with the LQR con-
troller, the observer poles be optimally assigned. Placing the
eigenvalues so that the observer is arbitrarily fast may accentu-
ate the noise and/or disturbances present in the system[9]. The
Kalman filter is a complete optimal state observer given some
information about the perturbations present in the system and
the noise present in the measurements[9].

Defining system disturbances as v, also called process noise,
and measurement noise as w, noises with Gaussian distribution
and zero mean[14], the new LTI model equations this time
instead of stochastic algebraic, are of the form:

t=A-z+B-u+v

56
y=C-z+w (56)
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Since the estimation error £ = z — &, the dynamic error

equation for the Kalman filter will be:
2=(A-LC) - z+v—L w (57)

In this case, being a stochastic system we add that if (A—LC)
is stable the estimation error is a stationary stochastic process
and the error will have a Gaussian distribution that does not
vary in time[14]. The Kalman filter is an optimal estimator by
minimizing the variance of the estimation error given by:

Py = E(Z(t)TZ(t)) (58)

Where P; is a positive definite symmetric n X n covariance
matrix obtained by solving the following equation:

P;(A-LC)T +(A-LC)P; —LR,LT + R, =0 (59)

The equation 59 is equivalent to the Riccati equation of the
V-B section, so the problem is solved in much the same way as
the LQR problem.

By introducing disturbances and noise to the system, the
observer design enters into a trade-off relationship where the
greater the noise of the measurements made the greater the
confidence in the model should be and, vice versa, the greater
the process noise the greater the confidence needed in the
measurements[9]. This will be adjusted by using the R, and
R,, parameters[14] present in the equation 59 which define the
process and measurement noise as follows:

E(v(s)vT(t)) = Ry - 6(t — )

E(w(s)wT (£)) = Ry - 8(t — ) (60)

Where § is the Dirac Delta function or unit impulse.
If the system is observable, the gain matrix L solution of the
optimal observer problem will be given by:
L= P;CTR! (61)

As for LQR, the calculation of L is solved using MATLAB.

The R, and R, matrices obtained following the results of
the analysis of the IV section are as follows:

O’% 0 0
R,=0.1 R,= |0 o2 0 (62)
2
0 0 T gyro
And it results in a Kalman filter with the following L. matrix:
0 —0.0001 —0.0440
L = |-0.0004 0.2148 1.0004 (63)
0.2649  0.1811 —4.6997 x 10*

The poles of the optimal observer are located at —0.0021,
—0.2147, —29.0842 and —1.0691 x 106,

Adequate performance is obtained for both the LTI model
and the nonlinear model, the estimation for the same case as
above can be seen in figure 14.
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Fig. 14. Controller-connected optimal state estimator with full LQR state
feedback with sinusoidal position setpoint

Importantly, not only are the state variables tracked correctly
(the curves are overlaid), but the filtering action of the observer
can also be observed, removing the high frequency components
of the noisy measurement.

C. Performance evaluation of LOR controller with Kalman

filter

The fulfillment of the requirements stated in section II of the
LQR controller with the full state estimation provided by the
obtained Kalman filter is evaluated.

In figure 15 it can be seen that for a sinusoidal position
setpoint of 1m amplitude and 15s period the vehicle respects
the imposed tolerances.

VII. LQG CONTROLLER PERFORMANCE ANALYSIS

The results obtained for the LQG controller, i.e., the com-
bination of the linear quadratic regulator LQR and the linear
quadratic observer or Kalman filter, on the nonlinear model of
the vehicle are shown below.

In figure 16 the response of the controller at different initial
angles 6y can be observed. The maximum angle at which the
controller can stabilize the vehicle is approximately 30°.
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Figure 17 shows the response of the nonlinear model with
the obtained LQG controller to different impulsive thrust forces
on the vehicle center of mass. The maximum stabilizable thrust
force is about 4NV

VIII. SIMSCAPE ENVIRONMENT FOR DESIGN
VERIFICATION

Simscape is a MATLAB Simulink tool where physical sys-
tems (whether electrical, mechanical, pneumatic, hydraulic,
thermal, etc.) are specifically modeled by interconnecting com-
ponent blocks without the need to derive mathematical equa-
tions from first principles. Simscape Multibody is an exten-
sion of the Simscape tool for the analysis, simulation and
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Fig. 17. Stabilizable maximum impulsive thrust force assessment

three-dimensional visualization of mechanical systems, always
within the same Simulink development environment.

In this work, Simscape Multibody is used as a validation
stage of the design, since the tool will provide a vehicle model
that, unlike previous models, is closer to reality by respect-
ing the real mechanical design of the vehicle (importing the
corresponding CAD software designs); using a more complex
wheel/ground contact model[16] where static and dynamic
friction, ground stiffness and damping, friction law, etc. are
modeled; and considering aspects that were simplified in the
equation-based approach.

The mechanical model of the vehicle, figure 24, was imple-
mented, which has as inputs the torque on the wheels and the
perturbation in the form of thrust force on the center of mass of
the chassis, and as outputs the actual state of the model (x+(t),
i4(t), 0(t) and theta(t)) and the variables needed for the sensor
models of the system. The outputs are posed in this way so that
the controller can be verified with and without an observer.

For obtaining x; and 1 the following relation is performed:

nt) =BT g =T
2 2

Where ¢1, g2 are the angular position of wheels 1 and 2, and
q1, g2 their angular velocity. Position and velocity are averaged
since in the paper both wheels were modeled as a single motion
but in the simulation environment with Simscape Multibody
their motion is independent.

To identify the rest of the necessary variables, a transforma-
tion sensor block was implemented, which reads the changes
in both rotation and translation of a reference system in the
vehicle chassis with respect to the reference system of the
environment. Using this transformation allows establishing an
equivalence between the reference system in the chassis with
the reference system of the inertial measurement unit, so that
the angular velocities and linear accelerations measured by the
transformation emulate those acquired by the sensor, see figure
18.

For the output read by the gyroscope only a conversion
from 7ad/s to °/s is performed. For the accelerometer output

(64)
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Fig. 18. Physical system scheme with inertial measurement unit reference
system

it is necessary to incorporate the decomposition of the vector
associated with the acceleration of gravity to the corresponding
linear accelerations, and perform the conversion from ™/s* to
g. This can be seen in figure 19, where R is the rotation matrix
of the vehicle chassis with respect to the surrounding reference

frame.
+
R] D)
Matrix ax
Multiply
[0 0 -1] Y
Gravity Acceleration + az .®
az

Fig. 19. Interface of the mechanical model of the vehicle to accelerometer
reading

IX. CONCLUSIONS

One of the great advantages provided by the proposed opti-
mal controller design is that once the linear quadratic regulator
LQR and the linear quadratic observer (or Kalman filter) are
obtained separately, when combined they are still optimal[5].

A LQG controller was implemented and when interacting
with the LTI model of the vehicle it performs adequately meet-
ing the requirements imposed. The same happens when placing
the same controller in the non-linear model of the vehicle. In the
case of the mechanical model with Simscape Multibody, which
is supposed to be closer to reality because of everything de-
scribed in the section VIII, the response of the linear quadratic
controller is more oscillatory than in the linear model, which
implies greater instability and large differences with the mathe-
matical model proposed that the controller cannot bridge. Even
so, the LQR controller meets the requirements. The difficulty
arose when implementing the linear quadratic observer on the
mechanical model. In spite of performing successive iterations

on the adjustment of the R, and R,, matrices, the Kalman filter
gave good performance in the estimation of z; or in 6 and theta
but it was not possible to comply with all the state variables. It
is necessary to continue the study with a robustness analysis of
the controller, making the necessary modifications to be able to
bridge the uncertainties of the model. Otherwise, it is necessary
to make modifications to the mathematical model to bring it
closer to the real behavior of the vehicle.

Another important observation is the delay that the system
presents to the setpoint tracking because it is a non-minimum
phase system. One of the possible solutions that can be pro-
posed to improve this characteristic is the implementation of a
direct control loop or feedforward.

Despite not having been able to obtain a controller that
performs adequately on the mechanical model of the vehicle, a
systematic analysis for the implementation of a LQG controller
in this type of vehicle was successfully developed.
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